Barnes-type Narumi polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Narumi – Katayama Index

The Narumi–Katayama index of a graph G is equal to the product of the degrees of the vertices of G. In this paper we consider a new version of the Narumi– Katayama index in which each vertex degree d is multiplied d times. We characterize the graphs extremal w.r.t. this new topological index.

متن کامل

Barnes–Evans relations for late–type giants and dwarfs

The visual surface brightness of K/M giants and dwarfs with near-solar metallicity differ slightly in agreement with the gravity effects predicted by recent theoretical models. We show that M-dwarfs display also a metallicity dependence of the surface brightness in the infrared K-band in agreement with theory. Based on these results, we present improved Barnes-Evans type relations and estimate ...

متن کامل

Twisted Dedekind Type Sums Associated with Barnes’ Type Multiple Frobenius-Euler l-Functions

The aim of this paper is to construct new Dedekind type sums. We construct generating functions of Barnes’ type multiple FrobeniusEuler numbers and polynomials. By applying Mellin transformation to these functions, we define Barnes’ type multiple l-functions, which interpolate Frobenius-Euler numbers at negative integers. By using generalizations of the Frobenius-Euler functions, we define gene...

متن کامل

Narumi-Katayama Index of Total Transformation Graphs

The Narumi-Katayama index of a graph was introduced in 1984 for representing the carbon skeleton of a saturated hydrocarbons and is defined as the product of degrees of all the vertices of the graph. In this paper, we examine the Narumi-Katayama index of different total transformation graphs. MSC (2010): Primary: 05C35; Secondary: 05C07, 05C40

متن کامل

Narumi-katayama Index of Some Derived Graphs

The Narumi-Katayama index of a graph G is equal to the product of degrees of all the vertices of G. In this paper, we examine the NarumiKatayama index of some derived graphs such as a Mycielski graph, subdivision graphs, double graph, extended double cover graph, thorn graph, subdivision vertex join and edge join graphs.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2014

ISSN: 1687-1847

DOI: 10.1186/1687-1847-2014-182